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You know my methods, Watson. Apply them.

—Arthur Conan Doyle, The Memoirs of Sherlock Holmes

Relational database systems support a small, fixed collection of data types (e.g., in-

tegers, dates, strings), which has proven adequate for traditional application domains

such as administrative data processing. In many application domains, however, much

more complex kinds of data must be handled. Typically this complex data has been

stored in OS file systems or specialized data structures, rather than in a DBMS. Ex-

amples of domains with complex data include computer-aided design and modeling

(CAD/CAM), multimedia repositories, and document management.

As the amount of data grows, the many features offered by a DBMS—for example,

reduced application development time, concurrency control and recovery, indexing

support, and query capabilities—become increasingly attractive and, ultimately, nec-

essary. In order to support such applications, a DBMS must support complex data

types. Object-oriented concepts have strongly influenced efforts to enhance database

support for complex data and have led to the development of object-database systems,

which we discuss in this chapter.

Object-database systems have developed along two distinct paths:

Object-oriented database systems: Object-oriented database systems are

proposed as an alternative to relational systems and are aimed at application

domains where complex objects play a central role. The approach is heavily in-

fluenced by object-oriented programming languages and can be understood as an

attempt to add DBMS functionality to a programming language environment.

Object-relational database systems: Object-relational database systems can

be thought of as an attempt to extend relational database systems with the func-

tionality necessary to support a broader class of applications and, in many ways,

provide a bridge between the relational and object-oriented paradigms.
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We will use acronyms for relational database management systems (RDBMS), object-

oriented database management systems (OODBMS), and object-relational database

management systems (ORDBMS). In this chapter we focus on ORDBMSs and em-

phasize how they can be viewed as a development of RDBMSs, rather than as an

entirely different paradigm.

The SQL:1999 standard is based on the ORDBMS model, rather than the OODBMS

model. The standard includes support for many of the complex data type features

discussed in this chapter. We have concentrated on developing the fundamental con-

cepts, rather than on presenting SQL:1999; some of the features that we discuss are

not included in SQL:1999. We have tried to be consistent with SQL:1999 for notation,

although we have occasionally diverged slightly for clarity. It is important to recognize

that the main concepts discussed are common to both ORDBMSs and OODBMSs, and

we discuss how they are supported in the ODL/OQL standard proposed for OODBMSs

in Section 25.8.

RDBMS vendors, including IBM, Informix, and Oracle, are adding ORDBMS func-

tionality (to varying degrees) in their products, and it is important to recognize how

the existing body of knowledge about the design and implementation of relational

databases can be leveraged to deal with the ORDBMS extensions. It is also impor-

tant to understand the challenges and opportunities that these extensions present to

database users, designers, and implementors.

In this chapter, sections 25.1 through 25.5 motivate and introduce object-oriented

concepts. The concepts discussed in these sections are common to both OODBMSs and

ORDBMSs, even though our syntax is similar to SQL:1999. We begin by presenting

an example in Section 25.1 that illustrates why extensions to the relational model

are needed to cope with some new application domains. This is used as a running

example throughout the chapter. We discuss how abstract data types can be defined

and manipulated in Section 25.2 and how types can be composed into structured types

in Section 25.3. We then consider objects and object identity in Section 25.4 and

inheritance and type hierarchies in Section 25.5.

We consider how to take advantage of the new object-oriented concepts to do ORDBMS

database design in Section 25.6. In Section 25.7, we discuss some of the new imple-

mentation challenges posed by object-relational systems. We discuss ODL and OQL,

the standards for OODBMSs, in Section 25.8, and then present a brief comparison of

ORDBMSs and OODBMSs in Section 25.9.

25.1 MOTIVATING EXAMPLE

As a specific example of the need for object-relational systems, we focus on a new busi-

ness data processing problem that is both harder and (in our view) more entertaining
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than the dollars and cents bookkeeping of previous decades. Today, companies in in-

dustries such as entertainment are in the business of selling bits; their basic corporate

assets are not tangible products, but rather software artifacts such as video and audio.

We consider the fictional Dinky Entertainment Company, a large Hollywood conglom-

erate whose main assets are a collection of cartoon characters, especially the cuddly

and internationally beloved Herbert the Worm. Dinky has a number of Herbert the

Worm films, many of which are being shown in theaters around the world at any given

time. Dinky also makes a good deal of money licensing Herbert’s image, voice, and

video footage for various purposes: action figures, video games, product endorsements,

and so on. Dinky’s database is used to manage the sales and leasing records for the

various Herbert-related products, as well as the video and audio data that make up

Herbert’s many films.

25.1.1 New Data Types

A basic problem confronting Dinky’s database designers is that they need support for

considerably richer data types than is available in a relational DBMS:

User-defined abstract data types (ADTs): Dinky’s assets include Herbert’s

image, voice, and video footage, and these must be stored in the database. Further,

we need special functions to manipulate these objects. For example, we may want

to write functions that produce a compressed version of an image or a lower-

resolution image. (See Section 25.2.)

Structured types: In this application, as indeed in many traditional business

data processing applications, we need new types built up from atomic types using

constructors for creating sets, tuples, arrays, sequences, and so on. (See Sec-

tion 25.3.)

Inheritance: As the number of data types grows, it is important to recognize

the commonality between different types and to take advantage of it. For exam-

ple, compressed images and lower-resolution images are both, at some level, just

images. It is therefore desirable to inherit some features of image objects while

defining (and later manipulating) compressed image objects and lower-resolution

image objects. (See Section 25.5.)

How might we address these issues in an RDBMS? We could store images, videos, and

so on as BLOBs in current relational systems. A binary large object (BLOB) is

just a long stream of bytes, and the DBMS’s support consists of storing and retrieving

BLOBs in such a manner that a user does not have to worry about the size of the

BLOB; a BLOB can span several pages, unlike a traditional attribute. All further

processing of the BLOB has to be done by the user’s application program, in the host

language in which the SQL code is embedded. This solution is not efficient because we
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Large objects in SQL: SQL:1999 includes a new data type called LARGE OBJECT

or LOB, with two variants called BLOB (binary large object) and CLOB (character

large object). This standardizes the large object support found in many current

relational DBMSs. LOBs cannot be included in primary keys, GROUP BY, or ORDER

BY clauses. They can be compared using equality, inequality, and substring oper-

ations. A LOB has a locator that is essentially a unique id and allows LOBs to

be manipulated without extensive copying.

LOBs are typically stored separately from the data records in whose fields they

appear. IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE

all support LOBs.

are forced to retrieve all BLOBs in a collection even if most of them could be filtered

out of the answer by applying user-defined functions (within the DBMS). It is not

satisfactory from a data consistency standpoint either, because the semantics of the

data is now heavily dependent on the host language application code and cannot be

enforced by the DBMS.

As for structured types and inheritance, there is simply no support in the relational

model. We are forced to map data with such complex structure into a collection of flat

tables. (We saw examples of such mappings when we discussed the translation from

ER diagrams with inheritance to relations in Chapter 2.)

This application clearly requires features that are not available in the relational model.

As an illustration of these features, Figure 25.1 presents SQL:1999 DDL statements

for a portion of Dinky’s ORDBMS schema that will be used in subsequent examples.

Although the DDL is very similar to that of a traditional relational system, it has

some important distinctions that highlight the new data modeling capabilities of an

ORDBMS. A quick glance at the DDL statements is sufficient for now; we will study

them in detail in the next section, after presenting some of the basic concepts that our

sample application suggests are needed in a next-generation DBMS.

25.1.2 Manipulating the New Kinds of Data

Thus far, we have described the new kinds of data that must be stored in the Dinky

database. We have not yet said anything about how to use these new types in queries,

so let’s study two queries that Dinky’s database needs to support. The syntax of the

queries is not critical; it is sufficient to understand what they express. We will return

to the specifics of the queries’ syntax as we proceed.

Our first challenge comes from the Clog breakfast cereal company. Clog produces a

cereal called Delirios, and it wants to lease an image of Herbert the Worm in front of
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1. CREATE TABLE Frames

(frameno integer, image jpeg image, category integer);

2. CREATE TABLE Categories

(cid integer, name text, lease price float, comments text);

3. CREATE TYPE theater t AS

ROW(tno integer, name text, address text, phone text);

4. CREATE TABLE Theaters OF theater t;

5. CREATE TABLE Nowshowing

(film integer, theater ref(theater t) with scope Theaters, start date, end date);

6. CREATE TABLE Films

(filmno integer, title text, stars setof(text),

director text, budget float);

7. CREATE TABLE Countries

(name text, boundary polygon, population integer, language text);

Figure 25.1 SQL:1999 DDL Statements for Dinky Schema

a sunrise, to incorporate in the Delirios box design. A query to present a collection

of possible images and their lease prices can be expressed in SQL-like syntax as in

Figure 25.2. Dinky has a number of methods written in an imperative language like

Java and registered with the database system. These methods can be used in queries

in the same way as built-in methods, such as =, +,−, <, >, are used in a relational

language like SQL. The thumbnail method in the Select clause produces a small

version of its full-size input image. The is sunrise method is a boolean function that

analyzes an image and returns true if the image contains a sunrise; the is herbert

method returns true if the image contains a picture of Herbert. The query produces

the frame code number, image thumbnail, and price for all frames that contain Herbert

and a sunrise.

SELECT F.frameno, thumbnail(F.image), C.lease price

FROM Frames F, Categories C

WHERE F.category = C.cid AND is sunrise(F.image) AND is herbert(F.image)

Figure 25.2 Extended SQL to Find Pictures of Herbert at Sunrise

The second challenge comes from Dinky’s executives. They know that Delirios is

exceedingly popular in the tiny country of Andorra, so they want to make sure that a

number of Herbert films are playing at theaters near Andorra when the cereal hits the

shelves. To check on the current state of affairs, the executives want to find the names

of all theaters showing Herbert films within 100 kilometers of Andorra. Figure 25.3

shows this query in an SQL-like syntax.
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SELECT N.theater–>name, N.theater–>address, F.title

FROM Nowshowing N, Films F, Countries C

WHERE N.film = F.filmno AND

overlaps(C.boundary, radius(N.theater–>address, 100)) AND

C.name = ‘Andorra’ AND ‘Herbert the Worm’ ∈ F.stars

Figure 25.3 Extended SQL to Find Herbert Films Playing near Andorra

The theater attribute of the Nowshowing table is a reference to an object in another

table, which has attributes name, address, and location. This object referencing allows

for the notation N.theater–>name and N.theater–>address, each of which refers to

attributes of the theater t object referenced in the Nowshowing row N . The stars

attribute of the films table is a set of names of each film’s stars. The radius method

returns a circle centered at its first argument with radius equal to its second argument.

The overlaps method tests for spatial overlap. Thus, Nowshowing and Films are

joined by the equijoin clause, while Nowshowing and Countries are joined by the spatial

overlap clause. The selections to ‘Andorra’ and films containing ‘Herbert the Worm’

complete the query.

These two object-relational queries are similar to SQL-92 queries but have some un-

usual features:

User-defined methods: User-defined abstract types are manipulated via their

methods, for example, is herbert (Section 25.2).

Operators for structured types: Along with the structured types available

in the data model, ORDBMSs provide the natural methods for those types. For

example, the setof types have the standard set methods ∈,∋,⊂,⊆, =,⊇,⊃,∪,∩,

and − (Section 25.3.1).

Operators for reference types: Reference types are dereferenced via an arrow

(–>) notation (Section 25.4.2).

To summarize the points highlighted by our motivating example, traditional relational

systems offer limited flexibility in the data types available. Data is stored in tables,

and the type of each field value is limited to a simple atomic type (e.g., integer or

string), with a small, fixed set of such types to choose from. This limited type system

can be extended in three main ways: user-defined abstract data types, structured types,

and reference types. Collectively, we refer to these new types as complex types. In

the rest of this chapter we consider how a DBMS can be extended to provide support

for defining new complex types and manipulating objects of these new types.
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25.2 USER-DEFINED ABSTRACT DATA TYPES

Consider the Frames table of Figure 25.1. It has a column image of type jpeg image,

which stores a compressed image representing a single frame of a film. The jpeg image

type is not one of the DBMS’s built-in types and was defined by a user for the Dinky

application to store image data compressed using the JPEG standard. As another

example, the Countries table defined in Line 7 of Figure 25.1 has a column boundary

of type polygon, which contains representations of the shapes of countries’ outlines on

a world map.

Allowing users to define arbitrary new data types is a key feature of ORDBMSs. The

DBMS allows users to store and retrieve objects of type jpeg image, just like an

object of any other type, such as integer. New atomic data types usually need to

have type-specific operations defined by the user who creates them. For example, one

might define operations on an image data type such as compress, rotate, shrink, and

crop. The combination of an atomic data type and its associated methods is called

an abstract data type, or ADT. Traditional SQL comes with built-in ADTs, such

as integers (with the associated arithmetic methods), or strings (with the equality,

comparison, and LIKE methods). Object-relational systems include these ADTs and

also allow users to define their own ADTs.

The label ‘abstract’ is applied to these data types because the database system does

not need to know how an ADT’s data is stored nor how the ADT’s methods work. It

merely needs to know what methods are available and the input and output types for

the methods. Hiding of ADT internals is called encapsulation.1 Note that even in

a relational system, atomic types such as integers have associated methods that are

encapsulated into ADTs. In the case of integers, the standard methods for the ADT

are the usual arithmetic operators and comparators. To evaluate the addition operator

on integers, the database system need not understand the laws of addition—it merely

needs to know how to invoke the addition operator’s code and what type of data to

expect in return.

In an object-relational system, the simplification due to encapsulation is critical be-

cause it hides any substantive distinctions between data types and allows an ORDBMS

to be implemented without anticipating the types and methods that users might want

to add. For example, adding integers and overlaying images can be treated uniformly

by the system, with the only significant distinctions being that different code is invoked

for the two operations and differently typed objects are expected to be returned from

that code.

1Some ORDBMSs actually refer to ADTs as opaque types because they are encapsulated and

hence one cannot see their details.



Object-Database Systems 743

Packaged ORDBMS extensions: Developing a set of user-defined types and

methods for a particular application—say image management—can involve a signif-

icant amount of work and domain-specific expertise. As a result, most ORDBMS

vendors partner with third parties to sell prepackaged sets of ADTs for particular

domains. Informix calls these extensions DataBlades, Oracle calls them Data Car-

tridges, IBM calls them DB2 Extenders, and so on. These packages include the

ADT method code, DDL scripts to automate loading the ADTs into the system,

and in some cases specialized access methods for the data type. Packaged ADT

extensions are analogous to class libraries that are available for object-oriented

programming languages: They provide a set of objects that together address a

common task.

25.2.1 Defining Methods of an ADT

At a minimum, for each new atomic type a user must define methods that enable the

DBMS to read in and to output objects of this type and to compute the amount of

storage needed to hold the object. The user who creates a new atomic type must

register the following methods with the DBMS:

Size: Returns the number of bytes of storage required for items of the type or the

special value variable, if items vary in size.

Import: Creates new items of this type from textual inputs (e.g., INSERT state-

ments).

Export: Maps items of this type to a form suitable for printing, or for use in an

application program (e.g., an ASCII string or a file handle).

In order to register a new method for an atomic type, users must write the code for

the method and then inform the database system about the method. The code to be

written depends on the languages supported by the DBMS, and possibly the operating

system in question. For example, the ORDBMS may handle Java code in the Linux

operating system. In this case the method code must be written in Java and compiled

into a Java bytecode file stored in a Linux file system. Then an SQL-style method

registration command is given to the ORDBMS so that it recognizes the new method:

CREATE FUNCTION is sunrise(jpeg image) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

This statement defines the salient aspects of the method: the type of the associated

ADT, the return type, and the location of the code. Once the method is registered,
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the DBMS uses a Java virtual machine to execute the code2. Figure 25.4 presents a

number of method registration commands for our Dinky database.

1. CREATE FUNCTION thumbnail(jpeg image) RETURNS jpeg image

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

2. CREATE FUNCTION is sunrise(jpeg image) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

3. CREATE FUNCTION is herbert(jpeg image) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

4. CREATE FUNCTION radius(polygon, float) RETURNS polygon

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

5. CREATE FUNCTION overlaps(polygon, polygon) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

Figure 25.4 Method Registration Commands for the Dinky Database

Type definition statements for the user-defined atomic data types in the Dinky schema

are given in Figure 25.5.

1. CREATE ABSTRACT DATA TYPE jpeg image

(internallength = VARIABLE, input = jpeg in, output = jpeg out);

2. CREATE ABSTRACT DATA TYPE polygon

(internallength = VARIABLE, input = poly in, output = poly out);

Figure 25.5 Atomic Type Declaration Commands for Dinky Database

25.3 STRUCTURED TYPES

Atomic types and user-defined types can be combined to describe more complex struc-

tures using type constructors. For example, Line 6 of Figure 25.1 defines a column

stars of type setof(text); each entry in that column is a set of text strings, represent-

ing the stars in a film. The setof syntax is an example of a type constructor. Other

common type constructors include:

ROW(n1 t1, ..., nn tn): A type representing a row, or tuple, of n fields with fields

n1, ..., nn of types t1, ..., tn respectively.

listof(base): A type representing a sequence of base-type items.

ARRAY(base): A type representing an array of base-type items.

setof(base): A type representing a set of base-type items. Sets cannot contain

duplicate elements.

2In the case of non-portable compiled code – written, for example, in a language like C++ – the

DBMS uses the operating system’s dynamic linking facility to link the method code into the database

system so that it can be invoked.



Object-Database Systems 745

Structured data types in SQL: The theater t type in Figure 25.1 illustrates

the new ROW data type in SQL:1999; a value of ROW type can appear in a field

of a tuple. In SQL:1999 the ROW type has a special role because every table is a

collection of rows—every table is a set of rows or a multiset of rows. SQL:1999

also includes a data type called ARRAY, which allows a field value to be an array.

The ROW and ARRAY type constructors can be freely interleaved and nested to

build structured objects. The listof, bagof, and setof type constructors are

not included in SQL:1999. IBM DB2, Informix UDS, and Oracle 8 support the

ROW constructor.

bagof(base): A type representing a bag or multiset of base-type items.

To fully appreciate the power of type constructors, observe that they can be composed;

for example, ARRAY(ROW(age: integer, sal: integer)). Types defined using type con-

structors are called structured types. Those using listof, ARRAY, bagof, or setof

as the outermost type constructor are sometimes referred to as collection types, or

bulk data types.

The introduction of structured types changes a fundamental characteristic of relational

databases, which is that all fields contain atomic values. A relation that contains a

structured type object is not in first normal form! We discuss this point further in

Section 25.6.

25.3.1 Manipulating Data of Structured Types

The DBMS provides built-in methods for the types supported through type construc-

tors. These methods are analogous to built-in operations such as addition and multi-

plication for atomic types such as integers. In this section we present the methods for

various type constructors and illustrate how SQL queries can create and manipulate

values with structured types.

Built-in Operators for Structured Types

We now consider built-in operators for each of the structured types that we presented

in Section 25.3.

Rows: Given an item i whose type is ROW(n1 t1, ..., nn tn), the field extraction method

allows us to access an individual field nk using the traditional dot notation i.nk. If row

constructors are nested in a type definition, dots may be nested to access the fields of

the nested row; for example i.nk.ml. If we have a collection of rows, the dot notation
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gives us a collection as a result. For example, if i is a list of rows, i.nk gives us a list

of items of type tn; if i is a set of rows, i.nk gives us a set of items of type tn.

This nested-dot notation is often called a path expression because it describes a path

through the nested structure.

Sets and multisets: Set objects can be compared using the traditional set methods

⊂,⊆, =,⊇,⊃. An item of type setof(foo) can be compared with an item of type

foo using the ∈ method, as illustrated in Figure 25.3, which contains the comparison

‘Herbert the Worm’ ∈ F.stars. Two set objects (having elements of the same type)

can be combined to form a new object using the ∪, ∩, and − operators.

Each of the methods for sets can be defined for multisets, taking the number of copies

of elements into account. The ∪ operation simply adds up the number of copies of an

element, the ∩ operation counts the lesser number of times a given element appears in

the two input multisets, and − subtracts the number of times a given element appears

in the second multiset from the number of times it appears in the first multiset. For

example, using multiset semantics ∪({1,2,2,2}, {2,2,3}) = {1,2,2,2,2,2,3}; ∩({1,2,2,2},

{2,2,3}) = {2,2}; and −({1,2,2,2}, {2,2,3}) = {1,2}.

Lists: Traditional list operations include head, which returns the first element; tail,

which returns the list obtained by removing the first element; prepend, which takes an

element and inserts it as the first element in a list; and append, which appends one list

to another.

Arrays: Array types support an ‘array index’ method to allow users to access array

items at a particular offset. A postfix ‘square bracket’ syntax is usually used; for

example, foo array[5].

Other: The operators listed above are just a sample. We also have the aggregate

operators count, sum, avg, max, and min, which can (in principle) be applied to any

object of a collection type. Operators for type conversions are also common. For

example, we can provide operators to convert a multiset object to a set object by

eliminating duplicates.

Examples of Queries Involving Nested Collections

We now present some examples to illustrate how relations that contain nested col-

lections can be queried, using SQL syntax. Consider the Films relation. Each tuple

describes a film, uniquely identified by filmno, and contains a set (of stars in the film)

as a field value. Our first example illustrates how we can apply an aggregate operator
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to such a nested set. It identifies films with more than two stars by counting the

number of stars; the count operator is applied once per Films tuple.3

SELECT F.filmno

FROM Films F

WHERE count(F.stars) > 2

Our second query illustrates an operation called unnesting. Consider the instance of

Films shown in Figure 25.6; we have omitted the director and budget fields (included in

the Films schema in Figure 25.1) for simplicity. A flat version of the same information

is shown in Figure 25.7; for each film and star in the film, we have a tuple in Films flat.

filmno title stars

98 Casablanca {Bogart, Bergman}

54 Earth Worms Are Juicy {Herbert, Wanda}

Figure 25.6 A Nested Relation, Films

filmno title star

98 Casablanca Bogart

98 Casablanca Bergman

54 Earth Worms Are Juicy Herbert

54 Earth Worms Are Juicy Wanda

Figure 25.7 A Flat Version, Films flat

The following query generates the instance of Films flat from Films:

SELECT F.filmno, F.title, S AS star

FROM Films F, F.stars AS S

The variable F is successively bound to tuples in Films, and for each value of F , the

variable S is successively bound to the set in the stars field of F . Conversely, we may

want to generate the instance of Films from Films flat. We can generate the Films

instance using a generalized form of SQL’s GROUP BY construct, as the following query

illustrates:

SELECT F.filmno, F.title, set gen(F.star)

FROM Films flat F

GROUP BY F.filmno, F.title

3SQL:1999 limits the use of aggregate operators on nested collections; to emphasize this restriction,

we have used count rather than COUNT, which we reserve for legal uses of the operator in SQL.
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Objects and oids: In SQL:1999 every tuple in a table can be given an oid by

defining the table in terms of a structured type, as in the definition of the Theaters

table in Line 4 of Figure 25.1. Contrast this with the definition of the Countries

table in Line 7; Countries tuples do not have associated oids. SQL:1999 also

assigns oids to large objects: this is the locator for the object.

There is a special type called REF whose values are the unique identifiers or oids.

SQL:1999 requires that a given REF type must be associated with a specific struc-

tured type and that the table it refers to must be known at compilation time,

i.e., the scope of each reference must be a table known at compilation time. For

example, Line 5 of Figure 25.1 defines a column theater of type ref(theater t).

Items in this column are references to objects of type theater t, specifically the

rows in the Theaters table, which is defined in Line 4. IBM DB2, Informix UDS,

and Oracle 8 support REF types.

The operator set gen, to be used with GROUP BY, requires some explanation. The GROUP

BY clause partitions the Films flat table by sorting on the filmno attribute; all tuples

in a given partition have the same filmno (and therefore the same title). Consider the

set of values in the star column of a given partition. This set cannot be returned in

the result of an SQL-92 query, and we have to summarize it by applying an aggregate

operator such as COUNT. Now that we allow relations to contain sets as field values,

however, we would like to return the set of star values as a field value in a single answer

tuple; the answer tuple also contains the filmno of the corresponding partition. The

set gen operator collects the set of star values in a partition and creates a set-valued

object. This operation is called nesting. We can imagine similar generator functions

for creating multisets, lists, and so on. However, such generators are not included in

SQL:1999.

25.4 OBJECTS, OBJECT IDENTITY, AND REFERENCE TYPES

In object-database systems, data objects can be given an object identifier (oid),

which is some value that is unique in the database across time. The DBMS is respon-

sible for generating oids and ensuring that an oid identifies an object uniquely over

its entire lifetime. In some systems, all tuples stored in any table are objects and are

automatically assigned unique oids; in other systems, a user can specify the tables for

which the tuples are to be assigned oids. Often, there are also facilities for generating

oids for larger structures (e.g., tables) as well as smaller structures (e.g., instances of

data values such as a copy of the integer 5, or a JPEG image).

An object’s oid can be used to refer (or ‘point’) to it from elsewhere in the data. Such

a reference has a type (similar to the type of a pointer in a programming language),

with a corresponding type constructor:
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URLs and oids: It is instructive to note the differences between Internet URLs

and the oids in object systems. First, oids uniquely identify a single object over

all time, whereas the web resource pointed at by an URL can change over time.

Second, oids are simply identifiers and carry no physical information about the

objects they identify—this makes it possible to change the storage location of

an object without modifying pointers to the object. In contrast, URLs include

network addresses and often file-system names as well, meaning that if the resource

identified by the URL has to move to another file or network address, then all

links to that resource will either be incorrect or require a ‘forwarding’ mechanism.

Third, oids are automatically generated by the DBMS for each object, whereas

URLs are user-generated. Since users generate URLs, they often embed semantic

information into the URL via machine, directory, or file names; this can become

confusing if the object’s properties change over time.

In the case of both URLs and oids, deletions can be troublesome: In an object

database this can result in runtime errors during dereferencing; on the web this

is the notorious ‘404 Page Not Found’ error. The relational mechanisms for refer-

ential integrity are not available in either case.

ref(base): a type representing a reference to an object of type base.

The ref type constructor can be interleaved with the type constructors for structured

types; for example, ROW(ref(ARRAY(integer))).

25.4.1 Notions of Equality

The distinction between reference types and reference-free structured types raises an-

other issue: the definition of equality. Two objects having the same type are defined

to be deep equal if and only if:

The objects are of atomic type and have the same value, or

The objects are of reference type, and the deep equals operator is true for the two

referenced objects, or

The objects are of structured type, and the deep equals operator is true for all the

corresponding subparts of the two objects.

Two objects that have the same reference type are defined to be shallow equal if they

both refer to the same object (i.e., both references use the same oid). The definition of

shallow equality can be extended to objects of arbitrary type by taking the definition

of deep equality and replacing deep equals by shallow equals in parts (2) and (3).
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As an example, consider the complex objects ROW(538, t89, 6-3-97,8-7-97) and ROW(538,

t33, 6-3-97,8-7-97), whose type is the type of rows in the table Nowshowing (Line 5 of

Figure 25.1). These two objects are not shallow equal because they differ in the second

attribute value. Nonetheless, they might be deep equal, if, for instance, the oids t89

and t33 refer to objects of type theater t that have the same value; for example,

tuple(54, ‘Majestic’, ‘115 King’, ‘2556698’).

While two deep equal objects may not be shallow equal, as the example illustrates,

two shallow equal objects are always deep equal, of course. The default choice of

deep versus shallow equality for reference types is different across systems, although

typically we are given syntax to specify either semantics.

25.4.2 Dereferencing Reference Types

An item of reference type ref(foo) is not the same as the foo item to which it

points. In order to access the referenced foo item, a built-in deref() method is

provided along with the ref type constructor. For example, given a tuple from the

Nowshowing table, one can access the name field of the referenced theater t object

with the syntax Nowshowing.deref(theater).name. Since references to tuple types are

common, some systems provide a java-style arrow operator, which combines a postfix

version of the dereference operator with a tuple-type dot operator. Using the arrow

notation, the name of the referenced theater can be accessed with the equivalent syntax

Nowshowing.theater–>name, as in Figure 25.3.

At this point we have covered all the basic type extensions used in the Dinky schema in

Figure 25.1. The reader is invited to revisit the schema and to examine the structure

and content of each table and how the new features are used in the various sample

queries.

25.5 INHERITANCE

We considered the concept of inheritance in the context of the ER model in Chapter

2 and discussed how ER diagrams with inheritance were translated into tables. In

object-database systems, unlike relational systems, inheritance is supported directly

and allows type definitions to be reused and refined very easily. It can be very helpful

when modeling similar but slightly different classes of objects. In object-database

systems, inheritance can be used in two ways: for reusing and refining types, and for

creating hierarchies of collections of similar but not identical objects.
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25.5.1 Defining Types with Inheritance

In the Dinky database, we model movie theaters with the type theater t. Dinky also

wants their database to represent a new marketing technique in the theater business:

the theater-cafe, which serves pizza and other meals while screening movies. Theater-

cafes require additional information to be represented in the database. In particular,

a theater-cafe is just like a theater, but has an additional attribute representing the

theater’s menu. Inheritance allows us to capture this ‘specialization’ explicitly in the

database design with the following DDL statement:

CREATE TYPE theatercafe t UNDER theater t (menu text);

This statement creates a new type, theatercafe t, which has the same attributes

and methods as theater t, along with one additional attribute menu of type text.

Methods defined on theater t apply to objects of type theatercafe t, but not vice

versa. We say that theatercafe t inherits the attributes and methods of theater t.

Note that the inheritance mechanism is not merely a ‘macro’ to shorten CREATE

statements. It creates an explicit relationship in the database between the subtype

(theatercafe t) and the supertype (theater t): An object of the subtype is also

considered to be an object of the supertype. This treatment means that any operations

that apply to the supertype (methods as well as query operators such as projection or

join) also apply to the subtype. This is generally expressed in the following principle:

The Substitution Principle: Given a supertype A and a subtype B, it

is always possible to substitute an object of type B into a legal expression

written for objects of type A, without producing type errors.

This principle enables easy code reuse because queries and methods written for the

supertype can be applied to the subtype without modification.

Note that inheritance can also be used for atomic types, in addition to row types.

Given a supertype image t with methods title(), number of colors(), and display(), we

can define a subtype thumbnail image t for small images that inherits the methods

of image t.

25.5.2 Binding of Methods

In defining a subtype, it is sometimes useful to replace a method for the supertype with

a new version that operates differently on the subtype. Consider the image t type,

and the subtype jpeg image t from the Dinky database. Unfortunately, the display()

method for standard images does not work for JPEG images, which are specially

compressed. Thus, in creating type jpeg image t, we write a special display() method
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for JPEG images and register it with the database system using the CREATE FUNCTION

command:

CREATE FUNCTION display(jpeg image) RETURNS jpeg image

AS EXTERNAL NAME ‘/a/b/c/jpeg.class’ LANGUAGE ’java’;

Registering a new method with the same name as an old method is called overloading

the method name.

Because of overloading, the system must understand which method is intended in a

particular expression. For example, when the system needs to invoke the display()

method on an object of type jpeg image t, it uses the specialized display method.

When it needs to invoke display on an object of type image t that is not otherwise

subtyped, it invokes the standard display method. The process of deciding which

method to invoke is called binding the method to the object. In certain situations,

this binding can be done when an expression is parsed (early binding), but in other

cases the most specific type of an object cannot be known until runtime, so the method

cannot be bound until then (late binding). Late binding facilties add flexibility, but

can make it harder for the user to reason about the methods that get invoked for a

given query expression.

25.5.3 Collection Hierarchies, Type Extents, and Queries

Type inheritance was invented for object-oriented programming languages, and our

discussion of inheritance up to this point differs little from the discussion one might

find in a book on an object-oriented language such as C++ or Java.

However, because database systems provide query languages over tabular datasets,

the mechanisms from programming languages are enhanced in object databases to

deal with tables and queries as well. In particular, in object-relational systems we can

define a table containing objects of a particular type, such as the Theaters table in the

Dinky schema. Given a new subtype such as theater cafe, we would like to create

another table Theater cafes to store the information about theater cafes. But when

writing a query over the Theaters table, it is sometimes desirable to ask the same

query over the Theater cafes table; after all, if we project out the additional columns,

an instance of the Theater cafes table can be regarded as an instance of the Theaters

table.

Rather than requiring the user to specify a separate query for each such table, we can

inform the system that a new table of the subtype is to be treated as part of a table

of the supertype, with respect to queries over the latter table. In our example, we can

say:

CREATE TABLE Theater cafes OF TYPE theater cafe t UNDER Theaters;
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This statement tells the system that queries over the theaters table should actually

be run over all tuples in both the theaters and Theater cafes tables. In such cases,

if the subtype definition involves method overloading, late-binding is used to ensure

that the appropriate methods are called for each tuple.

In general, the UNDER clause can be used to generate an arbitrary tree of tables, called

a collection hierarchy. Queries over a particular table T in the hierarchy are run

over all tuples in T and its descendants. Sometimes, a user may want the query to run

only on T , and not on the descendants; additional syntax, for example, the keyword

ONLY, can be used in the query’s FROM clause to achieve this effect.

Some systems automatically create special tables for each type, which contain refer-

ences to every instance of the type that exists in the database. These tables are called

type extents and allow queries over all objects of a given type, regardless of where

the objects actually reside in the database. Type extents naturally form a collection

hierarchy that parallels the type hierarchy.

25.6 DATABASE DESIGN FOR AN ORDBMS

The rich variety of data types in an ORDBMS offers a database designer many oppor-

tunities for a more natural or more efficient design. In this section we illustrate the

differences between RDBMS and ORDBMS database design through several examples.

25.6.1 Structured Types and ADTs

Our first example involves several space probes, each of which continuously records

a video. A single video stream is associated with each probe, and while this stream

was collected over a certain time period, we assume that it is now a complete object

associated with the probe. During the time period over which the video was col-

lected, the probe’s location was periodically recorded (such information can easily be

‘piggy-backed’ onto the header portion of a video stream conforming to the MPEG

standard). Thus, the information associated with a probe has three parts: (1) a probe

id that identifies a probe uniquely, (2) a video stream, and (3) a location sequence of

〈time, location〉 pairs. What kind of a database schema should we use to store this

information?

An RDBMS Database Design

In an RDBMS, we must store each video stream as a BLOB and each location sequence

as tuples in a table. A possible RDBMS database design is illustrated below:

Probes(pid: integer, time: timestamp, lat: real, long: real,



754 Chapter 25

camera: string, video: BLOB)

There is a single table called Probes, and it has several rows for each probe. Each of

these rows has the same pid, camera, and video values, but different time, lat, and long

values. (We have used latitude and longitude to denote location.) The key for this

table can be represented as a functional dependency: PTLN → CV, where N stands

for longitude. There is another dependency: P → CV. This relation is therefore not

in BCNF; indeed, it is not even in 3NF. We can decompose Probes to obtain a BCNF

schema:

Probes Loc(pid: integer, time: timestamp, lat: real, long: real)

Probes Video(pid: integer, camera: string, video: BLOB)

This design is about the best we can achieve in an RDBMS. However, it suffers from

several drawbacks.

First, representing videos as BLOBs means that we have to write application code

in an external language to manipulate a video object in the database. Consider this

query: “For probe 10, display the video recorded between 1:10 p.m. and 1:15 p.m. on

May 10 1996.” We have to retrieve the entire video object associated with probe 10,

recorded over several hours, in order to display a segment recorded over 5 minutes.

Next, the fact that each probe has an associated sequence of location readings is

obscured, and the sequence information associated with a probe is dispersed across

several tuples. A third drawback is that we are forced to separate the video information

from the sequence information for a probe. These limitations are exposed by queries

that require us to consider all the information associated with each probe; for example,

“For each probe, print the earliest time at which it recorded, and the camera type.”

This query now involves a join of Probes Loc and Probes Video on the pid field.

An ORDBMS Database Design

An ORDBMS supports a much better solution. First, we can store the video as an

ADT object and write methods that capture any special manipulation that we wish

to perform. Second, because we are allowed to store structured types such as lists,

we can store the location sequence for a probe in a single tuple, along with the video

information! This layout eliminates the need for joins in queries that involve both the

sequence and video information. An ORDBMS design for our example consists of a

single relation called Probes AllInfo:

Probes AllInfo(pid: integer, locseq: location seq, camera: string,

video: mpeg stream)
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This definition involves two new types, location seq and mpeg stream. The mpeg stream

type is defined as an ADT, with a method display() that takes a start time and an

end time and displays the portion of the video recorded during that interval. This

method can be implemented efficiently by looking at the total recording duration and

the total length of the video and interpolating to extract the segment recorded during

the interval specified in the query.

Our first query is shown below in extended SQL syntax; using this display method:

We now retrieve only the required segment of the video, rather than the entire video.

SELECT display(P.video, 1:10 p.m. May 10 1996, 1:15 p.m. May 10 1996)

FROM Probes AllInfo P

WHERE P.pid = 10

Now consider the location seq type. We could define it as a list type, containing a

list of ROW type objects:

CREATE TYPE location seq listof

(row (time: timestamp, lat: real, long: real))

Consider the locseq field in a row for a given probe. This field contains a list of rows,

each of which has three fields. If the ORDBMS implements collection types in their

full generality, we should be able to extract the time column from this list to obtain a

list of timestamp values, and to apply the MIN aggregate operator to this list to find

the earliest time at which the given probe recorded. Such support for collection types

would enable us to express our second query as shown below:

SELECT P.pid, MIN(P.locseq.time)

FROM Probes AllInfo P

Current ORDBMSs are not as general and clean as this example query suggests. For

instance, the system may not recognize that projecting the time column from a list

of rows gives us a list of timestamp values; or the system may allow us to apply an

aggregate operator only to a table and not to a nested list value.

Continuing with our example, we may want to do specialized operations on our location

sequences that go beyond the standard aggregate operators. For instance, we may want

to define a method that takes a time interval and computes the distance traveled by

the probe during this interval. The code for this method must understand details of

a probe’s trajectory and geospatial coordinate systems. For these reasons, we might

choose to define location seq as an ADT.

Clearly, an (ideal) ORDBMS gives us many useful design options that are not available

in an RDBMS.
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25.6.2 Object Identity

We now discuss some of the consequences of using reference types or oids. The use of

oids is especially significant when the size of the object is large, either because it is a

structured data type or because it is a big object such as an image.

Although reference types and structured types seem similar, they are actually quite dif-

ferent. For example, consider a structured type my theater tuple(tno integer, name

text, address text, phone text) and the reference type theater ref(theater t) of

Figure 25.1. There are important differences in the way that database updates affect

these two types:

Deletion: Objects with references can be affected by the deletion of objects

that they reference, while reference-free structured objects are not affected by

deletion of other objects. For example, if the Theaters table were dropped from

the database, an object of type theater might change value to null, because the

theater t object that it refers to has been deleted, while a similar object of type

my theater would not change value.

Update: Objects of reference types will change value if the referenced object is

updated. Objects of reference-free structured types change value only if updated

directly.

Sharing versus copying: An identified object can be referenced by multiple

reference-type items, so that each update to the object is reflected in many places.

To get a similar affect in reference-free types requires updating all ‘copies’ of an

object.

There are also important storage distinctions between reference types and nonreference

types, which might affect performance:

Storage overhead: Storing copies of a large value in multiple structured type

objects may use much more space than storing the value once and referring to

it elsewhere through reference type objects. This additional storage requirement

can affect both disk usage and buffer management (if many copies are accessed at

once).

Clustering: The subparts of a structured object are typically stored together on

disk. Objects with references may point to other objects that are far away on the

disk, and the disk arm may require significant movement to assemble the object

and its references together. Structured objects can thus be more efficient than

reference types if they are typically accessed in their entirety.

Many of these issues also arise in traditional programming languages such as C or

Pascal, which distinguish between the notions of referring to objects by value and by
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Oids and referential integrity: In SQL:1999, all the oids that appear in a

column of a relation are required to reference the same target relation. This

‘scoping’ makes it possible to check oid references for ‘referential integrity’ just as

foreign key references are checked. While current ORDBMS products supporting

oids do not support such checks, it is likely that they will do so in future releases.

This will make it much safer to use oids.

reference. In database design, the choice between using a structured type or a reference

type will typically include consideration of the storage costs, clustering issues, and the

effect of updates.

Object Identity versus Foreign Keys

Using an oid to refer to an object is similar to using a foreign key to refer to a tuple in

another relation, but not quite the same: An oid can point to an object of theater t

that is stored anywhere in the database, even in a field, whereas a foreign key reference

is constrained to point to an object in a particular referenced relation. This restric-

tion makes it possible for the DBMS to provide much greater support for referential

integrity than for arbitrary oid pointers. In general, if an object is deleted while there

are still oid-pointers to it, the best the DBMS can do is to recognize the situation by

maintaining a reference count. (Even this limited support becomes impossible if oids

can be copied freely.) Thus, the responsibility for avoiding dangling references rests

largely with the user if oids are used to refer to objects. This burdensome responsibil-

ity suggests that we should use oids with great caution and use foreign keys instead

whenever possible.

25.6.3 Extending the ER Model

The ER model as we described it in Chapter 2 is not adequate for ORDBMS design.

We have to use an extended ER model that supports structured attributes (i.e., sets,

lists, arrays as attribute values), distinguishes whether entities have object ids, and

allows us to model entities whose attributes include methods. We illustrate these

comments using an extended ER diagram to describe the space probe data in Figure

25.8; our notational conventions are ad hoc, and only for illustrative purposes.

The definition of Probes in Figure 25.8 has two new aspects. First, it has a structured-

type attribute listof(row(time, lat, long)); each value assigned to this attribute in

a Probes entity is a list of tuples with three fields. Second, Probes has an attribute

called videos that is an abstract data type object, which is indicated by a dark oval

for this attribute with a dark line connecting it to Probes. Further, this attribute has

an ‘attribute’ of its own, which is a method of the ADT.



758 Chapter 25

listof(row(time, lat, long))

camerapid

display(start,end)

Probes

video

Figure 25.8 The Space Probe Entity Set

Alternatively, we could model each video as an entity by using an entity set called

Videos. The association between Probes entities and Videos entities could then be

captured by defining a relationship set that links them. Since each video is collected

by precisely one probe, and every video is collected by some probe, this relationship

can be maintained by simply storing a reference to a probe object with each Videos

entity; this technique is essentially the second translation approach from ER diagrams

to tables discussed in Section 2.4.1.

If we also make Videos a weak entity set in this alternative design, we can add a

referential integrity constraint that causes a Videos entity to be deleted when the cor-

responding Probes entity is deleted. More generally, this alternative design illustrates

a strong similarity between storing references to objects and foreign keys; the foreign

key mechanism achieves the same effect as storing oids, but in a controlled manner.

If oids are used, the user must ensure that there are no dangling references when an

object is deleted, with very little support from the DBMS.

Finally, we note that a significant extension to the ER model is required to support

the design of nested collections. For example, if a location sequence is modeled as

an entity, and we want to define an attribute of Probes that contains a set of such

entities, there is no way to do this without extending the ER model. We will not

discuss this point further at the level of ER diagrams, but consider an example below

that illustrates when to use a nested collection.

25.6.4 Using Nested Collections

Nested collections offer great modeling power, but also raise difficult design deci-

sions. Consider the following way to model location sequences (other information

about probes is omitted here to simplify the discussion):

Probes1(pid: integer, locseq: location seq)
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This is a good choice if the important queries in the workload require us to look at

the location sequence for a particular probe, as in the query “For each probe, print

the earliest time at which it recorded, and the camera type.” On the other hand,

consider a query that requires us to look at all location sequences: “Find the earliest

time at which a recording exists for lat=5, long=90.” This query can be answered

more efficiently if the following schema is used:

Probes2(pid: integer, time: timestamp, lat: real, long: real)

The choice of schema must therefore be guided by the expected workload (as always!).

As another example, consider the following schema:

Can Teach1(cid: integer, teachers: setof(ssn: string), sal: integer)

If tuples in this table are to be interpreted as “Course cid can be taught by any of

the teachers in the teachers field, at a cost sal” then we have the option of using the

following schema instead:

Can Teach2(cid: integer, teacher ssn: string, sal: integer)

A choice between these two alternatives can be made based on how we expect to

query this table. On the other hand, suppose that tuples in Can Teach1 are to be

interpreted as “Course cid can be taught by the team teachers, at a combined cost of

sal.” Can Teach2 is no longer a viable alternative. If we wanted to flatten Can Teach1,

we would have to use a separate table to encode teams:

Can Teach2(cid: integer, team id: oid, sal: integer)

Teams(tid: oid, ssn: string)

As these examples illustrate, nested collections are appropriate in certain situations,

but this feature can easily be misused; nested collections should therefore be used with

care.

25.7 NEW CHALLENGES IN IMPLEMENTING AN ORDBMS

The enhanced functionality of ORDBMSs raises several implementation challenges.

Some of these are well understood and solutions have been implemented in products;

others are subjects of current research. In this section we examine a few of the key

challenges that arise in implementing an efficient, fully functional ORDBMS. Many

more issues are involved than those discussed here; the interested reader is encouraged

to revisit the previous chapters in this book and consider whether the implementation

techniques described there apply naturally to ORDBMSs or not.
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25.7.1 Storage and Access Methods

Since object-relational databases store new types of data, ORDBMS implementors

need to revisit some of the storage and indexing issues discussed in earlier chapters. In

particular, the system must efficiently store ADT objects and structured objects and

provide efficient indexed access to both.

Storing Large ADT and Structured Type Objects

Large ADT objects and structured objects complicate the layout of data on disk.

This problem is well understood and has been solved in essentially all ORDBMSs and

OODBMSs. We present some of the main issues here.

User-defined ADTs can be quite large. In particular, they can be bigger than a single

disk page. Large ADTs, like BLOBs, require special storage, typically in a different

location on disk from the tuples that contain them. Disk-based pointers are maintained

from the tuples to the objects they contain.

Structured objects can also be large, but unlike ADT objects they often vary in size

during the lifetime of a database. For example, consider the stars attribute of the films

table in Figure 25.1. As the years pass, some of the ‘bit actors’ in an old movie may

become famous.4 When a bit actor becomes famous, Dinky might want to advertise his

or her presence in the earlier films. This involves an insertion into the stars attribute

of an individual tuple in films. Because these bulk attributes can grow arbitrarily,

flexible disk layout mechanisms are required.

An additional complication arises with array types. Traditionally, array elements are

stored sequentially on disk in a row-by-row fashion; for example

A11, . . . A1n, A21, . . . , A2n, . . . Am1, . . . , Amn

However, queries may often request subarrays that are not stored contiguously on

disk (e.g., A11, A21, . . . , Am1). Such requests can result in a very high I/O cost for

retrieving the subarray. In order to reduce the number of I/Os required in general,

arrays are often broken into contiguous chunks, which are then stored in some order

on disk. Although each chunk is some contiguous region of the array, chunks need

not be row-by-row or column-by-column. For example, a chunk of size 4 might be

A11, A12, A21, A22, which is a square region if we think of the array as being arranged

row-by-row in two dimensions.

4A well-known example is Marilyn Monroe, who had a bit part in the Bette Davis classic All About

Eve.
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Indexing New Types

One important reason for users to place their data in a database is to allow for efficient

access via indexes. Unfortunately, the standard RDBMS index structures support only

equality conditions (B+ trees and hash indexes) and range conditions (B+ trees). An

important issue for ORDBMSs is to provide efficient indexes for ADT methods and

operators on structured objects.

Many specialized index structures have been proposed by researchers for particular ap-

plications such as cartography, genome research, multimedia repositories, Web search,

and so on. An ORDBMS company cannot possibly implement every index that has

been invented. Instead, the set of index structures in an ORDBMS should be user-

extensible. Extensibility would allow an expert in cartography, for example, to not

only register an ADT for points on a map (i.e., latitude/longitude pairs), but also im-

plement an index structure that supports natural map queries (e.g., the R-tree, which

matches conditions such as “Find me all theaters within 100 miles of Andorra”). (See

Chapter 26 for more on R-trees and other spatial indexes.)

One way to make the set of index structures extensible is to publish an access method

interface that lets users implement an index structure outside of the DBMS. The index

and data can be stored in a file system, and the DBMS simply issues the open, next,

and close iterator requests to the user’s external index code. Such functionality makes

it possible for a user to connect a DBMS to a Web search engine, for example. A main

drawback of this approach is that data in an external index is not protected by the

DBMS’s support for concurrency and recovery. An alternative is for the ORDBMS to

provide a generic ‘template’ index structure that is sufficiently general to encompass

most index structures that users might invent. Because such a structure is implemented

within the DBMS, it can support high concurrency and recovery. The Generalized

Search Tree (GiST) is such a structure. It is a template index structure based on B+

trees, which allows most of the tree index structures invented so far to be implemented

with only a few lines of user-defined ADT code.

25.7.2 Query Processing

ADTs and structured types call for new functionality in processing queries in OR-

DBMSs. They also change a number of assumptions that affect the efficiency of

queries. In this section we look at two functionality issues (user-defined aggregates

and security) and two efficiency issues (method caching and pointer swizzling).
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User-Defined Aggregation Functions

Since users are allowed to define new methods for their ADTs, it is not unreason-

able to expect them to want to define new aggregation functions for their ADTs as

well. For example, the usual SQL aggregates—COUNT, SUM, MIN, MAX, AVG—are not

particularly appropriate for the image type in the Dinky schema.

Most ORDBMSs allow users to register new aggregation functions with the system.

To register an aggregation function, a user must implement three methods, which we

will call initialize, iterate, and terminate. The initialize method initializes the internal

state for the aggregation. The iterate method updates that state for every tuple seen,

while the terminate method computes the aggregation result based on the final state

and then cleans up. As an example, consider an aggregation function to compute the

second-highest value in a field. The initialize call would allocate storage for the top

two values, the iterate call would compare the current tuple’s value with the top two

and update the top two as necessary, and the terminate call would delete the storage

for the top two values, returning a copy of the second-highest value.

Method Security

ADTs give users the power to add code to the DBMS; this power can be abused. A

buggy or malicious ADT method can bring down the database server or even corrupt

the database. The DBMS must have mechanisms to prevent buggy or malicious user

code from causing problems. It may make sense to override these mechanisms for

efficiency in production environments with vendor-supplied methods. However, it is

important for the mechanisms to exist, if only to support debugging of ADT methods;

otherwise method writers would have to write bug-free code before registering their

methods with the DBMS—not a very forgiving programming environment!

One mechanism to prevent problems is to have the user methods be interpreted rather

than compiled. The DBMS can check that the method is well behaved either by

restricting the power of the interpreted language or by ensuring that each step taken

by a method is safe before executing it. Typical interpreted languages for this purpose

include Java and the procedural portions of SQL:1999.

An alternative mechanism is to allow user methods to be compiled from a general-

purpose programming language such as C++, but to run those methods in a different

address space than the DBMS. In this case the DBMS sends explicit interprocess

communications (IPCs) to the user method, which sends IPCs back in return. This

approach prevents bugs in the user methods (e.g., stray pointers) from corrupting

the state of the DBMS or database and prevents malicious methods from reading or

modifying the DBMS state or database as well. Note that the user writing the method

need not know that the DBMS is running the method in a separate process: The user
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code can be linked with a ‘wrapper’ that turns method invocations and return values

into IPCs.

Method Caching

User-defined ADT methods can be very expensive to execute and can account for the

bulk of the time spent in processing a query. During query processing it may make

sense to cache the results of methods, in case they are invoked multiple times with the

same argument. Within the scope of a single query, one can avoid calling a method

twice on duplicate values in a column by either sorting the table on that column or

using a hash-based scheme much like that used for aggregation (see Section 12.7). An

alternative is to maintain a cache of method inputs and matching outputs as a table in

the database. Then to find the value of a method on particular inputs, we essentially

join the input tuples with the cache table. These two approaches can also be combined.

Pointer Swizzling

In some applications, objects are retrieved into memory and accessed frequently through

their oids; dereferencing must be implemented very efficiently. Some systems maintain

a table of oids of objects that are (currently) in memory. When an object O is brought

into memory, they check each oid contained in O and replace oids of in-memory objects

by in-memory pointers to those objects. This technique is called pointer swizzling

and makes references to in-memory objects very fast. The downside is that when

an object is paged out, in-memory references to it must somehow be invalidated and

replaced with its oid.

25.7.3 Query Optimization

New indexes and query processing techniques widen the choices available to a query

optimizer. In order to handle the new query processing functionality, an optimizer

must know about the new functionality and use it appropriately. In this section we

discuss two issues in exposing information to the optimizer (new indexes and ADT

method estimation) and an issue in query planning that was ignored in relational

systems (expensive selection optimization).

Registering Indexes with the Optimizer

As new index structures are added to a system—either via external interfaces or built-

in template structures like GiSTs—the optimizer must be informed of their existence,

and their costs of access. In particular, for a given index structure the optimizer must

know (a) what WHERE-clause conditions are matched by that index, and (b) what the
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Optimizer extensibility: As an example, consider the Oracle 8i optimizer,

which is extensible and supports user defined ‘domain’ indexes and methods. The

support includes user defined statistics and cost functions that the optimizer will

use in tandem with system statistics. Suppose that there is a domain index for

text on the resume column and a regular Oracle B-tree index on hiringdate. A

query with a selection on both these fields can be evaluated by converting the rids

from the two indexes into bitmaps, performing a bitmap AND, and converting the

resulting bitmap to rids before accessing the table. Of course, the optimizer will

also consider using the two indexes individually, as well as a full table scan.

cost of fetching a tuple is for that index. Given this information, the optimizer can

use any index structure in constructing a query plan. Different ORDBMSs vary in

the syntax for registering new index structures. Most systems require users to state a

number representing the cost of access, but an alternative is for the DBMS to measure

the structure as it is used and maintain running statistics on cost.

Reduction Factor and Cost Estimation for ADT Methods

In Section 14.2.1 we discussed how to estimate the reduction factor of various selection

and join conditions including =, <, and so on. For user-defined conditions such as

is herbert(), the optimizer also needs to be able to estimate reduction factors. Esti-

mating reduction factors for user-defined conditions is a difficult problem and is being

actively studied. The currently popular approach is to leave it up to the user—a user

who registers a method can also register an auxiliary function to estimate the method’s

reduction factor. If such a function is not registered, the optimizer uses an arbitrary

value such as 1

10
.

ADT methods can be quite expensive and it is important for the optimizer to know

just how much these methods cost to execute. Again, estimating method costs is

open research. In current systems users who register a method are able to specify the

method’s cost as a number, typically in units of the cost of an I/O in the system.

Such estimation is hard for users to do accurately. An attractive alternative is for the

ORDBMS to run the method on objects of various sizes and attempt to estimate the

method’s cost automatically, but this approach has not been investigated in detail and

is not implemented in commercial ORDBMSs.

Expensive selection optimization

In relational systems, selection is expected to be a zero-time operation. For example, it

requires no I/Os and few CPU cycles to test if emp.salary < 10. However, conditions
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such as is herbert(Frames.image) can be quite expensive because they may fetch large

objects off the disk and process them in memory in complicated ways.

ORDBMS optimizers must consider carefully how to order selection conditions. For

example, consider a selection query that tests tuples in the Frames table with two con-

ditions: Frames.frameno < 100 ∧ is herbert(Frame.image). It is probably preferable

to check the frameno condition before testing is herbert. The first condition is quick

and may often return false, saving the trouble of checking the second condition. In

general, the best ordering among selections is a function of their costs and reduction

factors. It can be shown that selections should be ordered by increasing rank, where

rank = (reduction factor − 1)/cost. If a selection with very high rank appears in a

multi-table query, it may even make sense to postpone the selection until after per-

forming joins. Note that this approach is the opposite of the heuristic for pushing

selections presented in Section 14.3! The details of optimally placing expensive selec-

tions among joins are somewhat complicated, adding to the complexity of optimization

in ORDBMSs.

25.8 OODBMS

In the introduction of this chapter, we defined an OODBMS as a programming lan-

guage with support for persistent objects. While this definition reflects the origins of

OODBMSs accurately, and to a certain extent the implementation focus of OODBMSs,

the fact that OODBMSs support collection types (see Section 25.3) makes it possible

to provide a query language over collections. Indeed, a standard has been developed

by the Object Database Management Group (ODMG) and is called Object Query

Language, or OQL.

OQL is similar to SQL, with a SELECT–FROM–WHERE–style syntax (even GROUP BY,

HAVING, and ORDER BY are supported) and many of the proposed SQL:1999 extensions.

Notably, OQL supports structured types, including sets, bags, arrays, and lists. The

OQL treatment of collections is more uniform than SQL:1999 in that it does not give

special treatment to collections of rows; for example, OQL allows the aggregate opera-

tion COUNT to be applied to a list to compute the length of the list. OQL also supports

reference types, path expressions, ADTs and inheritance, type extents, and SQL-style

nested queries. There is also a standard Data Definition Language for OODBMSs

(Object Data Language, or ODL) that is similar to the DDL subset of SQL, but

supports the additional features found in OODBMSs, such as ADT definitions.

25.8.1 The ODMG Data Model and ODL

The ODMG data model is the basis for an OODBMS, just like the relational data

model is the basis for an RDBMS. A database contains a collection of objects, which
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Class = interface + implementation: Properly speaking, a class consists of

an interface together with an implementation of the interface. An ODL interface

definition is implemented in an OODBMS by translating it into declarations of

the object-oriented language (e.g., C++, Smalltalk or Java) supported by the

OODBMS. If we consider C++, for instance, there is a library of classes that

implement the ODL constructs. There is also an Object Manipulation Lan-

guage (OML) specific to the programming language (in our example, C++),

which specifies how database objects are manipulated in the programming lan-

guage. The goal is to seamlessly integrate the programming language and the

database features.

are similar to entities in the ER model. Every object has a unique oid, and a database

contains collections of objects with similar properties; such a collection is called a

class.

The properties of a class are specified using ODL and are of three kinds: attributes,

relationships, and methods. Attributes have an atomic type or a structured type.

ODL supports the set, bag, list, array, and struct type constructors; these are

just setof, bagof, listof, ARRAY, and ROW in the terminology of Section 25.3.

Relationships have a type that is either a reference to an object or a collection of such

references. A relationship captures how an object is related to one or more objects of

the same class or of a different class. A relationship in the ODMG model is really just

a binary relationship in the sense of the ER model. A relationship has a corresponding

inverse relationship; intuitively, it is the relationship ‘in the other direction.’ For

example, if a movie is being shown at several theaters, and each theater shows several

movies, we have two relationships that are inverses of each other: shownAt is associated

with the class of movies and is the set of theaters at which the given movie is being

shown, and nowShowing is associated with the class of theaters and is the set of movies

being shown at that theater.

Methods are functions that can be applied to objects of the class. There is no analog

to methods in the ER or relational models.

The keyword interface is used to define a class. For each interface, we can declare

an extent, which is the name for the current set of objects of that class. The extent is

analogous to the instance of a relation, and the interface is analogous to the schema.

If the user does not anticipate the need to work with the set of objects of a given

class—it is sufficient to manipulate individual objects—the extent declaration can be

omitted.
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The following ODL definitions of the Movie and Theater classes illustrate the above

concepts. (While these classes bear some resemblance to the Dinky database schema,

the reader should not look for an exact parallel, since we have modified the example

to highlight ODL features.)

interface Movie

(extent Movies key movieName)

{ attribute date start;

attribute date end;

attribute string moviename;

relationship Set〈Theater〉 shownAt inverse Theater::nowShowing;

}

The collection of database objects whose class is Movie is called Movies. No two

objects in Movies have the same movieName value, as the key declaration indicates.

Each movie is shown at a set of theaters and is shown during the specified period. (It

would be more realistic to associate a different period with each theater, since a movie

is typically played at different theaters over different periods. While we can define a

class that captures this detail, we have chosen a simpler definition for our discussion.)

A theater is an object of class Theater, which is defined below:

interface Theater

(extent Theaters key theaterName)

{ attribute string theaterName;

attribute string address;

attribute integer ticketPrice;

relationship Set〈Movie〉 nowShowing inverse Movie::shownAt;

float numshowing() raises(errorCountingMovies);

}

Each theater shows several movies and charges the same ticket price for every movie.

Observe that the shownAt relationship of Movie and the nowShowing relationship

of Theater are declared to be inverses of each other. Theater also has a method

numshowing() that can be applied to a theater object to find the number of movies

being shown at that theater.

ODL also allows us to specify inheritance hierarchies, as the following class definition

illustrates:

interface SpecialShow extends Movie

(extent SpecialShows)

{ attribute integer maximumAttendees;

attribute string benefitCharity;

}
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An object of class SpecialShow is an object of class Movie, with some additional prop-

erties, as discussed in Section 25.5.

25.8.2 OQL

The ODMG query language OQL was deliberately designed to have syntax similar to

SQL, in order to make it easy for users familiar with SQL to learn OQL. Let us begin

with a query that finds pairs of movies and theaters such that the movie is shown at

the theater and the theater is showing more than one movie:

SELECT mname: M.movieName, tname: T.theaterName

FROM Movies M, M.shownAt T

WHERE T.numshowing() > 1

The SELECT clause indicates how we can give names to fields in the result; the two

result fields are called mname and tname. The part of this query that differs from

SQL is the FROM clause. The variable M is bound in turn to each movie in the extent

Movies. For a given movie M , we bind the variable T in turn to each theater in the

collection M.shownAt. Thus, the use of the path expression M.shownAt allows us to

easily express a nested query. The following query illustrates the grouping construct

in OQL:

SELECT T.ticketPrice,

avgNum: AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T

GROUP BY T.ticketPrice

For each ticket price, we create a group of theaters with that ticket price. This group

of theaters is the partition for that ticket price and is referred to using the OQL

keyword partition. In the SELECT clause, for each ticket price, we compute the

average number of movies shown at theaters in the partition for that ticketPrice. OQL

supports an interesting variation of the grouping operation that is missing in SQL:

SELECT low, high,

avgNum: AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T

GROUP BY low: T.ticketPrice < 5, high: T.ticketPrice >= 5

The GROUP BY clause now creates just two partitions called low and high. Each the-

ater object T is placed in one of these partitions based on its ticket price. In the

SELECT clause, low and high are boolean variables, exactly one of which is true in

any given output tuple; partition is instantiated to the corresponding partition of

theater objects. In our example, we get two result tuples. One of them has low equal
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to true and avgNum equal to the average number of movies shown at theaters with

a low ticket price. The second tuple has high equal to true and avgNum equal to the

average number of movies shown at theaters with a high ticket price.

The next query illustrates OQL support for queries that return collections other than

set and multiset:

(SELECT T.theaterName

FROM Theaters T

ORDER BY T.ticketPrice DESC) [0:4]

The ORDER BY clause makes the result a list of theater names ordered by ticket price.

The elements of a list can be referred to by position, starting with position 0. Thus,

the expression [0:4] extracts a list containing the names of the five theaters with the

highest ticket prices.

OQL also supports DISTINCT, HAVING, explicit nesting of subqueries, view definitions,

and other SQL features.

25.9 COMPARING RDBMS WITH OODBMS AND ORDBMS

Now that we have covered the main object-oriented DBMS extensions, it is time to

consider the two main variants of object-databases, OODBMSs and ORDBMSs, and

to compare them with RDBMSs. Although we have presented the concepts underlying

object-databases, we still need to define the terms OODBMS and ORDBMS.

An ORDBMS is a relational DBMS with the extensions discussed in this chapter.

(Not all ORDBMS systems support all the extensions in the general form that we

have discussed them, but our concern in this section is the paradigm itself rather than

specific systems.) An OODBMS is a programming language with a type system

that supports the features discussed in this chapter and allows any data object to

be persistent, that is, to survive across different program executions. Many current

systems conform to neither definition entirely but are much closer to one or the other,

and can be classified accordingly.

25.9.1 RDBMS versus ORDBMS

Comparing an RDBMS with an ORDBMS is straightforward. An RDBMS does not

support the extensions discussed in this chapter. The resulting simplicity of the data

model makes it easier to optimize queries for efficient execution, for example. A rela-

tional system is also easier to use because there are fewer features to master. On the

other hand, it is less versatile than an ORDBMS.



770 Chapter 25

25.9.2 OODBMS versus ORDBMS: Similarities

OODBMSs and ORDBMSs both support user-defined ADTs, structured types, ob-

ject identity and reference types, and inheritance. Both support a query language

for manipulating collection types. ORDBMSs support an extended form of SQL, and

OODBMSs support ODL/OQL. The similarities are by no means accidental: OR-

DBMSs consciously try to add OODBMS features to an RDBMS, and OODBMSs

in turn have developed query languages based on relational query languages. Both

OODBMSs and ORDBMSs provide DBMS functionality such as concurrency control

and recovery.

25.9.3 OODBMS versus ORDBMS: Differences

The fundamental difference is really a philosophy that is carried all the way through:

OODBMSs try to add DBMS functionality to a programming language, whereas OR-

DBMSs try to add richer data types to a relational DBMS. Although the two kinds of

object-databases are converging in terms of functionality, this difference in their under-

lying philosophies (and for most systems, their implementation approach) has impor-

tant consequences in terms of the issues emphasized in the design of these DBMSs, and

the efficiency with which various features are supported, as the following comparison

indicates:

OODBMSs aim to achieve seamless integration with a programming language

such as C++, Java or Smalltalk. Such integration is not an important goal for an

ORDBMS. SQL:1999, like SQL-92, allows us to embed SQL commands in a host

language, but the interface is very evident to the SQL programer. (SQL:1999 also

provides extended programming language constructs of its own, incidentally.)

An OODBMS is aimed at applications where an object-centric viewpoint is ap-

propriate; that is, typical user sessions consist of retrieving a few objects and

working on them for long periods, with related objects (e.g., objects referenced

by the original objects) fetched occasionally. Objects may be extremely large,

and may have to be fetched in pieces; thus, attention must be paid to buffering

parts of objects. It is expected that most applications will be able to cache the

objects they require in memory, once the objects are retrieved from disk. Thus,

considerable attention is paid to making references to in-memory objects efficient.

Transactions are likely to be of very long duration and holding locks until the end

of a transaction may lead to poor performance; thus, alternatives to Two Phase

locking must be used.

An ORDBMS is optimized for applications where large data collections are the fo-

cus, even though objects may have rich structure and be fairly large. It is expected

that applications will retrieve data from disk extensively, and that optimizing disk

accesses is still the main concern for efficient execution. Transactions are assumed
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to be relatively short, and traditional RDBMS techniques are typically used for

concurrency control and recovery.

The query facilities of OQL are not supported efficiently in most OODBMSs,

whereas the query facilities are the centerpiece of an ORDBMS. To some extent,

this situation is the result of different concentrations of effort in the development

of these systems. To a significant extent, it is also a consequence of the systems’

being optimized for very different kinds of applications.

25.10 POINTS TO REVIEW

Object-oriented database systems (OODBMSs) add DBMS functionality to a pro-

gramming language and environment. Object-relational database systems (OR-

DBMSs) extend the functionality of relational database systems. The data type

system is extended with user-defined abstract data types (ADTs), structured types,

and inheritance. New query features include operators for structured types, oper-

ators for reference types, and user-defined methods. (Section 25.1)

An abstract data type is an atomic data type and its associated methods. Users

can create new ADTs. For a new atomic type, we must register the methods size,

import, and export with the DBMS. Object files containing new methods can also

be registered. (Section 25.2)

We can construct more complex data types from atomic types and user-defined

types using type constructors. There are type constructors for creating row types,

lists, arrays, sets, and bags and there are built-in operators for all these types. We

can unnest a set-valued type by creating a tuple for each element in the set. The

reverse operation is called nesting. (Section 25.3)

Data objects can have an object identifier (oid), which is a unique value that

identifies the object. An oid has a type called a reference type. Since fields

within objects can be of reference types, there are two notions of equality, deep

and shallow equality. Fields that contain a reference type can be dereferenced to

access the associated object. (Section 25.4)

Inheritance allows us to create new types (called subtypes) that extend existing

types (called supertypes). Any operations that apply to the supertype also apply to

the subtype. We can overload methods by defining the same method for sub- and

supertypes. The type of the object decides which method is called; this process

is called binding. Analogous to types, we can create an inheritance hierarchy for

tables called a collection hierarchy. (Section 25.5)

The multitude of data types in an ORDBMS allows us to design a more natural

and efficient database schema. But we have to be careful to take the differences

between reference types and structured types and between reference types and
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nonreference types into account. We should use oids with caution and use foreign

keys instead whenever possible. We can extend the ER model to incorporate

ADTs and methods, or we can model ADTs using existing constructs. Nested

types provide great modeling power but the choice of schema should be guided by

the expected workload. (Section 25.6)

Implementing an ORDBMS brings new challenges. The system must store large

ADTs and structured types that might be very large. Efficient and extensible

index mechanisms must be provided. Examples of new functionality include user-

defined aggregation functions (we can define new aggregation functions for our

ADTs) and method security (the system has to prevent user-defined methods from

compromising the security of the DBMS). Examples of new techniques to increase

performance include method caching and pointer swizzling. The optimizer must

know about the new functionality and use it appropriately. (Section 25.7)

Object Query Language (OQL) is a query language for OODBMSs that provides

constructs to query collection types. Its data definition language is called Object

Data Language (ODL). We discussed elements of the ODML data model and gave

examples of OQL and ODL. (Section 25.8)

An ORDBMS is a relational DBMS with the extensions discussed in this chapter.

An OODBMS is a programming language with a type system that includes the fea-

tures discussed in this chapter. ORDBMSs add OODBMS features to a RDBMS,

but there are several differences to a full-fledged OODBMS. (Section 25.9)

EXERCISES

Exercise 25.1 Briefly answer the following questions.

1. What are the two kinds of new data types supported in object-database systems? Give

an example of each, and discuss how the example situation would be handled if only an

RDBMS was available.

2. What must a user do to define a new ADT?

3. Allowing users to define methods can lead to efficiency gains. Give an example.

4. What is late binding of methods? Give an example of inheritance that illustrates the

need for dynamic binding.

5. What are collection hierarchies? Give an example that illustrates how collection hierar-

chies facilitate querying.

6. Discuss how a DBMS exploits encapsulation in implementing support for ADTs.

7. Give an example illustrating the nesting and unnesting operations.

8. Describe two objects that are deep equal but not shallow equal, or explain why this is

not possible.
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9. Describe two objects that are shallow equal but not deep equal, or explain why this is

not possible.

10. Compare RDBMSs with ORDBMSs. Describe an application scenario for which you

would choose an RDBMS, and explain why. Similarly, describe an application scenario

for which you would choose an ORDBMS, and explain why.

Exercise 25.2 Consider the Dinky schema shown in Figure 25.1 and all related methods

defined in the chapter. Write the following queries in extended SQL:

1. How many films were shown at theater tno = 5 between January 1 and February 1 of

1997?

2. What is the lowest budget for a film with at least two stars?

3. Consider theaters at which a film directed by Steven Spielberg started showing on Jan-

uary 1, 1997. For each such theater, print the names of all countries within a 100-mile

radius. (You can use the overlap and radius methods illustrated in Figure 25.2.)

Exercise 25.3 In a company database, you need to store information about employees, de-

partments, and children of employees. For each employee, identified by ssn, you must record

years (the number of years that the employee has worked for the company), phone, and photo

information. There are two subclasses of employees: contract and regular. Salary is com-

puted by invoking a method that takes years as a parameter; this method has a different

implementation for each subclass. Further, for each regular employee, you must record the

name and age of every child. The most common queries involving children are similar to

“Find the average age of Bob’s children” and “Print the names of all of Bob’s children.”

A photo is a large image object and can be stored in one of several image formats (e.g.,

gif, jpeg). You want to define a display method for image objects; display must be defined

differently for each image format. For each department, identified by dno, you must record

dname, budget, and workers information. Workers is the set of employees who work in a

given department. Typical queries involving workers include, “Find the average salary of all

workers (across all departments).”

1. Using extended SQL, design an ORDBMS schema for the company database. Show all

type definitions, including method definitions.

2. If you have to store this information in an RDBMS, what is the best possible design?

3. Compare the ORDBMS and RDBMS designs.

4. If you are told that a common request is to display the images of all employees in a given

department, how would you use this information for physical database design?

5. If you are told that an employee’s image must be displayed whenever any information

about the employee is retrieved, would this affect your schema design?

6. If you are told that a common query is to find all employees who look similar to a given

image, and given code that lets you create an index over all images to support retrieval

of similar images, what would you do to utilize this code in an ORDBMS?

Exercise 25.4 ORDBMSs need to support efficient access over collection hierarchies. Con-

sider the collection hierarchy of Theaters and Theater cafes presented in the Dinky example.

In your role as a DBMS implementor (not a DBA), you must evaluate three storage alterna-

tives for these tuples:
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All tuples for all kinds of theaters are stored together on disk in an arbitrary order.

All tuples for all kinds of theaters are stored together on disk, with the tuples that are

from Theater cafes stored directly after the last of the non-cafe tuples.

Tuples from Theater cafes are stored separately from the rest of the (non-cafe) theater

tuples.

1. For each storage option, describe a mechanism for distinguishing plain theater tuples

from Theater cafe tuples.

2. For each storage option, describe how to handle the insertion of a new non-cafe tuple.

3. Which storage option is most efficient for queries over all theaters? Over just The-

ater cafes? In terms of the number of I/Os, how much more efficient is the best technique

for each type of query compared to the other two techniques?

Exercise 25.5 Different ORDBMSs use different techniques for building indexes to evaluate

queries over collection hierarchies. For our Dinky example, to index theaters by name there

are two common options:

Build one B+ tree index over Theaters.name and another B+ tree index over The-

ater cafes.name.

Build one B+ tree index over the union of Theaters.name and Theater cafes.name.

1. Describe how to efficiently evaluate the following query using each indexing option (this

query is over all kinds of theater tuples):

SELECT * FROM Theaters T WHERE T.name = ‘Majestic’

Give an estimate of the number of I/Os required in the two different scenarios, assuming

there are 1,000,000 standard theaters and 1,000 theater-cafes. Which option is more

efficient?

2. Perform the same analysis over the following query:

SELECT * FROM Theater cafes T WHERE T.name = ‘Majestic’

3. For clustered indexes, does the choice of indexing technique interact with the choice of

storage options? For unclustered indexes?

Exercise 25.6 Consider the following query:

SELECT thumbnail(I.image)

FROM Images I

Given that the I.image column may contain duplicate values, describe how to use hashing to

avoid computing the thumbnail function more than once per distinct value in processing this

query.

Exercise 25.7 You are given a two-dimensional, n × n array of objects. Assume that you

can fit 100 objects on a disk page. Describe a way to lay out (chunk) the array onto pages

so that retrievals of square m × m subregions of the array are efficient. (Different queries

will request subregions of different sizes, i.e., different m values, and your arrangement of the

array onto pages should provide good performance, on average, for all such queries.)
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Exercise 25.8 An ORDBMS optimizer is given a single-table query with n expensive selec-

tion conditions, σn(...(σ1(T ))). For each condition σi, the optimizer can estimate the cost ci

of evaluating the condition on a tuple and the reduction factor of the condition ri. Assume

that there are t tuples in T .

1. How many tuples appear in the output of this query?

2. Assuming that the query is evaluated as shown (without reordering selections), what

is the total cost of the query? Be sure to include the cost of scanning the table and

applying the selections.

3. In Section 25.7.2 it was asserted that the optimizer should reorder selections so that they

are applied to the table in order of increasing rank, where ranki = (ri − 1)/ci. Prove

that this assertion is optimal. That is, show that no other ordering could result in a

query of lower cost. (Hint: It may be easiest to consider the special case where n = 2

first and generalize from there.)
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